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Isolated vortices in a background flow of constant shear are studied. The flow is 
governed by the two-dimensional Euler equation. An infinite family of integral 
invariants, the Casimirs, constrain the flow to an isovortical surface. An isovortical 
surface consists of all flows that can be obtained by some incompressible deformation 
of a given vorticity field. It is proved that on every isovortical surface satisfying 
appropriate conditions there exists a stationary solution, stable to all exponentially 
growing disturbances, which represents a localized vortex that is elongated in the 
direction of the external flow. The most important condition is that the vorticity 
anomaly q in the vortex has the same sign as the external shear. The validity of the 
proof also requires that q is non-zero only in a finite region, and that 0 < qmin d q d 
qmaZ < co in this region (assuming the external shear to be positive). 

1. Introduction 
Coherent vortices are often observed in natural shear flows. Their vorticity usually 

has the same sign as that of the background flow, and they are elongated in the 
direction of this flow. One example is the Great Red Spot of Jupiter, which extends 
more than 20000 km in the longitudinal direction, and has existed for at least 300 
years. There also exist many other coherent vortices on Jupiter and the other large 
planets. In most cases they are anticyclones situated in regions of anticyclonic shear of 
the zonal flow, and their longitudinal extent (in the direction of the external flow) is 
typically about twice as long as the latitudinal extent. Similar vortices also appear 
spontaneously in shear flows in both laboratory experiments (Antipov et al. 1985; 
Sommeria, Meyers & Swinney 1988) and numerical simulations (Marcus 1990; Toh, 
Ohkitani & Yamada 1991). 

Theoretically, stationary vortex solutions with opposite signs of the vorticity 
anomaly and the external shear can also be found. Such counter-rotating vortices are 
rarely seen in nature, perhaps because they are unstable. In numerical simulations it is 
observed that they are sheared away and stretched out to long filaments by the external 
flow, while vortices rotating in the same direction as the outer shear flow are much 
more robust (Marcus 1990; Toh et al. 1991). 

The theoretical understanding of this difference mainly comes from analysing elliptic 
vortex patches with constant vorticity, which are exact stationary solutions of the two- 
dimensional Euler equation with a uniform external shear (Moore & Saffman 1971). 
If the shear and the vorticity anomaly have the same sign, such vortex patches are 
linearly stable. If they have opposite signs, stationary solutions only exist if the 
vorticity of the external shear is weaker than 0.21 times the vorticity anomaly of the 
vortex. There are then two stationary solutions with different ellipticity. The more 



120 J .  Nycander 
.1 

(4 

_ - - - - - -  @; 
- - _  

- - - _ _ - -  - 

- . - 
\ 

/ , 
/ 

> 

FIGURE 1. (a) A circular vortex is placed in a uniform shear flow. The circles are contour curves of 
vorticity, and the dashed curves are the same contour curves after the vortex has been deformed into 
a stationary solution. The area inside any contour curve is preserved during the deformation. The 
proof presented in this work guarantees that a stationary solution can be constructed by such a 
deformation. (b)  General shape of the radial vorticity profiles for which the proof is valid. q must have 
finite support (defined as the region where q + 0) and satisfy 0 < qmi, < q < q,,, < 00 on its support. 

elongated one is unstable, while the less elongated one is linearly stable. However, the 
simulations by Marcus (1990) show that even vortices of the latter kind are easily 
destroyed by finite-amplitude perturbations. 

In this paper, we study stationary vortices in a uniform external shear flow without 
any restriction to elliptical shape or piecewise-constant vorticity. The problem we solve 
is illustrated in figure 1, and may be described as follows. Suppose that a circular vortex 
with monotonic radial vorticity profile is placed in a uniform shear flow. Can a 
stationary vortex be obtained by deforming this vortex incompressibly, so that the 
vorticity in each fluid element is conserved during the deformation? (The flows that can 
be obtained by incompressible deformations of the vorticity field are said to lie on the 
same ‘isovortical surface’, or ‘symplectic leaf’.) It will be shown that if the vorticity of 
the external shear and the circular vortex have the same sign, the answer is in general 
yes. (For the proof to be valid, some additional conditions on the vorticity distribution, 
which are listed at the beginning of 95 and illustrated in figure 1 (b), must also be 
satisfied.) Moreover, the stationary solution is obtained by that incompressible 
deformation which maximizes the energy of the flow, and it is therefore stable. 

This does not mean, of course, that the flow will evolve toward this stationary 
solution if a circular vortex in uniform shear flow is taken as initial condition. Indeed, 
this stationary state is inaccessible, since its energy is larger than that of the initial state. 
In the simplest case, with a circular patch of constant vorticity as initial condition, the 
vortex will perform regular oscillations around the elliptical stationary state of 
maximum energy, as demonstrated by Kida’s (1981) exact solutions. With a non- 
constant vorticity profile the time evolution will presumably be more irregular, but 
qualitatively similar. 

In more mathematical terms, the following will be proved: on every isovortical 
surface such that the external shear and the vorticity anomaly have the same sign (and 
some additional technical conditions are satisfied), there exists a maximum energy 
flow. This flow contains a localized, stationary and spectrally stable vortex. The 
method of the proof is similar to that of Benjamin (1976), who proved that three- 
dimensional vortex rings maximize the energy on isovortical surfaces (restricting the 
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dynamics to axisymmetric perturbations), and Burton (1988), who proved the existence 
of nonlinear dipole vortex solutions. 

In $2 the problem is stated, and a simple intuitive argument for the existence of a 
maximum energy flow is given. A rigorous proof is presented in $3, which is more 
mathematical than usual for a paper in fluid dynamics. (Many readers will probably 
be satisfied with the simple argument in $2.) The implications for stability are studied 
in $4, and in $ 5  the results are summarized and discussed. 

2. Formulation of the problem and heuristic solution 
Assume that the background flow is given by V = - Sya, where S is the strength of 

the shear. The Euler equation for two-dimensional incompressible flow can then be 
written 

%+{Y,q) at = 0, 

where { ,} denotes the Poisson bracket (or Jacobian), q = V2q5 is the vorticity anomaly, 
and Y = ;Sy2 + q5 is the streamfunction of the total flow V +  u, where u = 2 x Vq5. We 
assume that q has compact support. (The support of q is defined as the region where 
q + 0, and compact means closed and bounded.) Equation (1) then conserves the 
infinite family of Casimir functionals, 

c 

where F is an arbitrary function and the integral is taken over the (x, y)-plane. It also 
conserves the energy, 

E = - - (Sy2+q5)qdr 
2 ‘I 

= - lyq q(r,) q(r,) In (Ir, -rzl) dr, dr,. (3) 

The total energy of the vortex is actually infinite, since the circulation is non-zero, but 
in (3) this singularity has been removed. 

We now want to maximize the energy, while keeping all Casimir functionals fixed. 
This means that we are constrained to a particular ‘symplectic leaf’, or ‘isovortical 
surface’. (In mathematical terminology, all functions q(r) on the same isovortical 
surface are said to be ‘rearrangements’ of one another.) An isovortical surface is 
specified by the function 

c 

where H is the Heaviside function. Thus, A&) is the area of the region where q 2 p. 
It decreases monotonically to zero at p = ( Irnaz,  and approaches the area of the support 
of q when p+ 0. 

Imagine that a fixed value of q is assigned to each fluid element in the incompressible 
fluid. Regardless of how the fluid elements are redistributed over the (x, y)-plane (or 
‘rearranged’), we are then on the same isovortical surface. If we define U = - E, and 
interpret q as mass density, we see from (3) that U has the form of potential energy due 
to two-dimensional gravitational forces. The first term represents the contribution 
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from an external gravitational field, and the second one is the interaction energy 
between the mass elements. If S = 0 and q > 0 everywhere, the minimum potential 
energy (i.e. the maximum of E )  is of course attained by a circularly symmetric 
distribution with the heaviest matter at the centre. (Proof is given below.) 

If S > 0, this vortex (or ‘lump of matter’) is placed in an external potential valley 
with the shape Sy2/2. It seems intuitively obvious that the minimum potential energy 
(or maximum of E )  is attained when it lies at the bottom of the valley. (A rigorous 
proof is given in the next section. It will be seen that the existence of a minimum is in 
fact not so obvious, and depends crucially on the long-range nature of the Green’s 
function.) It will be somewhat squeezed together by the external field, so that the shape 
is no longer circular, but the vorticity anomaly (or ‘density’) still decreases 
monotonically outward from the centre. Any incompressible deformation (re- 
arrangement) of this configuration will decrease E, with the exception of a rigid 
translation in the x-direction, which of course leaves it unchanged. 

To first order, a general isovortical perturbation (i.e. a perturbation that does not 
affect the Casimirs) is given by 6q = 6r-Vq,  where V - 6 r  = 0. Thus, we can write 6q = 

{a, q), where a(x, y) is an arbitrary function. To higher orders we have (Benjamin 1976) 

( 5 )  
This expansion can be obtained by direct calculation, imposing the condition that the 
variation of all Casimirs must vanish to all orders. It can also be obtained as a Lie series 
in the Hamiltonian formulation of the Euler equation. 

For the maximum energy configuration, we must have 6E = 0. Using the first-order 

Aq = 6q+a2q+ ...= (a ,q}+~a,{a ,q}}+ ... . 

term in (5 )  this implies 

This is the equation for a stationary flow, with the solution Y = %(q,,). Thus, we have 
established the existence of a stationary solution on every isovortical surface (i.e. for 
any prescription of the integrals C,) such that S and q are positive. (In the rigorous 
proof below, the additional assumption (10) is also needed.) This solution is a vortex 
elongated in the direction of the external flow. 

The exact shape depends on the integrals C,. For a patch of constant vorticity it is 
elliptic, but in general the shape cannot be determined analytically. Numerically it 
should be easy to find the solution with the relaxation procedure proposed by 
Carnevale & Vallis (1990). With their algorithm the vorticity is advected by an artificial 
incompressible velocity field. This field is chosen so that the energy increases 
monotonically, while all the Casimirs are automatically conserved, until a steady state 
is reached. 

A general measure of the ellipticity of a stationary solution can be obtained by 
multiplying (6) by xy and integrating. After partial integration we obtain 

where we assumed that V$ decreases as l / r  at infinity, so that the boundary terms 
vanished. The left-hand side of this relation gives a measure of the elongation in the 
x-direction. It is positive if S and q have the same sign. 

3. Proof of the existence of an energy maximum 
In this section we will prove rigorously that there exists a maximum energy flow on 

every isovortical surface that satisfies the appropriate conditions. We then need 
theorems on symmetrization, which is a particular kind of rearrangement. Given a 
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function of one variable q(x) ,  the symmetrized function q*(x) is even, and non- 
increasing for x > 0. For functions q(r) of several variables, the symmetrized function 
is a non-increasing function of r = Irl. We have the following formal definition. 

Dejinition: Let D, =  ED: q(r) b p}, and let Dz be the corresponding symmetrized 
domain, i.e. the sphere r d p or r < p with the same volume as D,. Then, for any given 
rED*, 

q*(r) = sup(p:r€D;}. 

Here D is the domain of definition of q ;  q* is said to be symmetrically decreasing. Since 
q* is a rearrangement of q, it of course satisfies the Casimir constraints: C&] = C,[q*] 
for arbitrary F, where the integral is taken over D and D*, respectively. Moreover, if 
q(r) is Lipschitz continuous, then so is q*(r) (Bandle 1980). 

We will need the following inequality (theorem 380 in Hardy, Littlewood & Polya 
1952) : Lrn J:* P(x)q(Y)g(x-Y)dxdY d J", J~~P*(x)q*(y)g(.r-r)dxdy, (7) 

where p and q are non-negative functions, and g is symmetrically decreasing. By 
symmetrizing infinitely many times along various directions, (7) can be generalized to 
functions of several variables (Sobolev 1963) : 

If S = 0, (8) can immediately be applied to the energy E in (3). Identifying g with the 
Green's function, and setting p = q, we find that the energy is maximum for q*(r), i.e. 
for a circular vortex with monotonic decreasing vorticity profile. 

If S > 0 the energy is still bounded from above, since the first term in (3) is negative 
definite, but we cannot find the maximum explicitly. We may symmetrize along the x- 
axis, which according to (7) increases the second term in (3), while leaving the first one 
unchanged, and also along the y-axis, which increases both terms. (For the first term 
we then use the inequality sfgdy d sf*g* dy, lemma 2.4 in Bandle 1980.) We conclude 
that the maximizing function q(r) must be symmetric decreasing in both the x- and y- 
directions. However, we cannot symmetrize in any other direction, since this would 
change the externally given function y 2 .  

We will now show that the upper bound of Eis attained by some function q(r), which 
is therefore the stationary solution we are looking for. The key concept is compactness, 
which is absent a priori for two reasons. One is that the functions qi in a maximizing 
sequence (i.e. a sequence for which E[qi] approaches the upper bound of E )  might 
become more and more fragmented and rapidly oscillating. The other is that the 
support of qi might be stretched out to an ever longer and thinner filament. In neither 
case would the sequence converge to an acceptable solution. The proof will be done in 
two steps, dealing with these issues separately. In the first step we confine the problem 
to the square D = {x,y: - L d x,y d L}, and in the second step we show that this 
restriction can be removed. 

We first observe that the set of bounded functions If1 dfmUx on a bounded domain 
D is the same in L'[D] as in L2[D]. This follows from the inequalities 

c c 

and 
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where A(D) is the area of D,  and we used Cauchy-Schwarz inequality. Thus, we can 
use whichever norm is the most convenient in the estimates below. 

Let Z, denote the set of all possible rearrangements of some given function q(r) that 
have their support entirely in D. Assume that 0 < q < qma,. Consider a maximizing 
sequence {qi} ,  where qi E Z,. As explained above, we may assume that all the functions 
qi are symmetric decreasing in x and y .  In Appendix A it is proved that the set of all 
functionsfon D that are symmetric decreasing in x and y and satisfy 0 <f(r) < f,,, 
is totally bounded in L2[D] and L1[D]. (The definition of 'totally bounded' is given in 
Appendix A. A set which is totally bounded and complete is compact, which 
guarantees that every sequence has a convergent subsequence.) Since the sequence {qi} 
is a subset of a totally bounded set it is totally bounded, hence it contains a Cauchy 
sequence. This Cauchy sequence must converge to some 4 in L2[D] and L1[D], since 
these spaces are complete. Furthermore, since E is a continuous functional on L2[D] 
(as shown in Appendix B), E [ i ]  is the maximum energy. 

It remains to show that BEE,, i.e. that 4 is a rearrangement of qi. We do this by 
showing that the functions A&) and A,+(p), defined in (4), are equal. We have 

J D J O  

since, as already shown, qi + 4 in L'-norm. Since all the functions A,&) are identical, 
this shows that A,(p)  = A, . (p)  for all p, except perhaps on a set of measure zero. But 
from the definition (4) we know that both these functions are monotonic decreasing, 
and attain the left limit (i.e. the largest value) at any discontinuity point. It is then clear 
that in fact A&) = A g i ( p )  for all p. This completes the first part of the proof. 

The maximizer 4 must be symmetric decreasing in x and y ,  and in the interior of D 
it must satisfy (6). This implies that if 4 is discontinuous in one point, it must also be 
discontinuous everywhere on the isoline of Y where this point is located. Hence, 4 can 
only be discontinuous for the same values of q as the symmetrized function q*(r). 
Loosely speaking, 4 is as smooth as the smoothest functions in C,. 

The second step is to show that if L is large enough, then the support of 4 is 
everywhere at a finite distance from the boundary of D .  Then, letting d > 0 denote the 
minimum distance between the support of 4 and the boundary of D,  and L, = L - d the 
maximum half-diameter of the support (cf. figure 2), 4 and L, (and the energy of 4) do 
not change if L is decreased by an amount smaller than d. If L is decreased more than 
this, the support touches the boundary of D,  i.e. L, = L. Hence, there exists some 
critical value L, such that L, = L for L < L, and L, = L, for L > L,. When L > L, the 
maximizer 4 is independent of L, and in fact maximizes E in Z, the set of unrestricted 
rearrangements of q(r). 

To show this we assume the opposite, i.e. that the support of 4 touches the boundary 
of D. Since 4 must be symmetric decreasing, this happens in the points ( f L, 0). (If it 
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FIGURE 2. Illustration of the energy maximization when the support of q (i.e. the region where q + 0) 
is confined to the square D = {x, y :  - L < x, y < L}. The inner curve is the boundary of the support 
of the maximizer 4, d denotes the minimum distance between this curve and the boundary of D, and 
L, the distance from the origin to the point where it crosses the x-axis. L, is independent of L as long 
as L is larger than some critical value L,, and the boundary of D can then be removed without 
changing the maximizer 4. 

happens in the points (0, +L)  we can use the same procedure as below, but the 
necessary inequalities are then more easily satisfied, since y: in (9) is replaced by 
y:-L2.) We study the particular rearrangement of 4 by which the infinitesimal 
circulation dQ is moved from rL = (L, 0) to a point rc = (xc, yc)  as close as possible 
to the origin, but outside the support of i. The energy change due to this 
rearrangement is given by 

d E =  -dQ[~S~:+q5(rc)-q5(r,)l, 

where V2q5 = 4. If we can show that 

q 5 k L )  - &c) > $Y:, (9) 

then dE is positive, which contradicts the assumption that 4 is a maximizer. Hence the 
support of 4 cannot touch the boundary of D,  and the proof is complete. 

To see that (9) is plausible, we assume that most of the vorticity is concentrated in 
a small region near the origin, so that $(r) z (Q/27c) In (r) ,  where Q = sq dr is the total 
circulation. rc can always be chosen smaller than ( A / K ) ” ~ ,  where A is the area of the 
support of q, and we find that (9) is satisfied if L > (A/n)’”exp (SAIQ) .  While nothing 
is proved by this crude estimate, it does demonstrate that the result depends crucially 
on the long-range nature of the Green’s function. 

To show (9), we make the additional assumption that q satisfies 

0 < qmia G 4 G Qmax (10) 

on its support, for some constants qmin and qmax. (Thus, q is discontinuous on the 
boundary of its support.) We then estimate the left-hand side of (9) in two steps. For 
the first step, we divide the square - L G x, y 6 L into three parts, cf. figure 3.  S,  is 
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I 
FIGURE 3. Illustration of the domain of integration in ( 1  l ) ,  

the half-square x > 0, S, is the half-circle x < 0 and r < (A/nl”, and S, is the 
remainder of the square. We have 

Since 4 is symmetric decreasing in x, the integral over S,  is positive. Furthermore, 

ls, @r’) In (7) dr’ > ls2 q(r’) In (s) dr‘ = In (F) , 

where PQ is the circulation of the circle r < (A/n)’l2,  and 

The next step is to estimate the maximum difference in $ between two close points: 

2n 2n 

2n dr‘ = - qmaz rc(A/x)l/’. 

Adding (12) and (13) we obtain 
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Notice that if P +. 0, the difference $(rJ - $(rJ may remain bounded as L +a. (This 
is the case, for instance, if the vorticity is stretched out in a narrow strip along the x- 
axis.) To show (9), we therefore need an estimate of rc (and hence of yc )  that goes to 
zero as P < 0. Since the support of 4 closer than (A/x)'12 to the origin has an area less 
than /3Q/qmin, we can choose 

Equations (1 4) and (1 5) give 

$(rL) - $(rC) - $y2, > -In Q 2 - ~ qmaz ( ~ AQP ) ' I 2  +[lnrG)-"]"". (16) 
87l x 9min qmin 8' 

The right-hand side of (16) is a second degree polynomial in /31i2. Since P (i.e. the 
fraction of the total circulation which is closer than (A/x)'I2 to the origin) is unknown, 
we use the value at the minimum point of the parabola, and obtain 

where the denominator in the last term is assumed to be positive. Thus, if 

then (9) is satisfied, which completes the proof. 
The existence proofs for vortex rings by Benjamin (1976) and for dipole vortices by 

Burton (1988) were based on similar ideas as here. However, the mathematics involved 
in the present proof is simpler. The basic reason is that it was here possible to 
symmetrize in both the x- and the y-directions. Together with the theorem of Appendix 
A this provided the compactness property, and it was therefore not necessary to invoke 
the rather abstract concepts of weak topology. 

We end this section with a conjecture. Consider two different isovortical surfaces El 
and C,, represented by the symmetrized functions q?(r) and ql(r) ,  respectively. 
Suppose that these two functions have the same support, and that q:(r) 2 qT(r). It 
seems likely that increasing the amplitude of the vortex will make it more circular, i.e. 
that the support of the maximizing function i2 in C2 can be inscribed in a smaller 
square than the corresponding maximizer 4, in C,. (If qT and q,* are proportional, this 
is certainly true.) If this conjecture could be proven, the estimate (18) could be 
sharpened drastically, and qmin could be removed from (10). 

4. Stability 
The fact that a flow maximizes E on an isovortical surface clearly has implications 

for the nonlinear stability. If the initial perturbation is isovortical, the system must 
remain close to the maximum on the isovortical surface. If the perturbation contains 
some vorticity, the system is initially displaced to some neighbouring isovortical 
surface. It is then equivalent to a system which is isovortically perturbed from the 
nearby maximum energy point on this new surface. As argued by Benjamin (1976), this 
should guarantee stability in a practical sense. However, it is not so easy to formalize 
this to a statement of stability in some norm. 

Spectral stability (i.e. the absence of unstable linear eigenmodes), on the other hand, 
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can easily be shown. For a maximum energy flow, the second-order variation S2E is 
negative definite. Hence, using (9, 

for all variations of the form V2S$ = Sq = {a, qo). The equality here holds only for the 
translation mode, a = ky.  

The linear equation for small perturbations of a stationary flow, obtained by setting 
q = qo + q1 in (1) and linearizing, conserves the integrals 

where f is arbitrary. This is the first-order perturbation of the Casimirs (2), with f = 

F’. Another invariant of the linearized equation is S2E in (19), with S q  replaced by 
ql( t ) .  This invariant is usually called the ‘ pseudoenergy’ or the ‘ Arnol’d invariant’ 
(McIntyre & Shepherd 1987). The corresponding invariant in a plasma physical 
context is called ‘free energy’ by Morrison & Pfirsch (1989) and Morrison & 
Kotschenreuther (1990). If it were positive definite and bounded away from zero for 
arbitrary perturbations Sq (and not just for isovortical ones), the flow would be 
‘formally stable’. 

For a growing eigenmode q(r) exp [(y - iw) t ] ,  the value of all invariants must be zero. 
cf = 0 implies that there exists some function a(r) such that = {a, qo}. But from (19) 
we know that S2E is negative for all functions of this form, except for the translation 
mode, which is obviously not growing. Hence no growing eigenmode exists. (This does 
not exclude algebraic instabilities, which are a superposition of steady linear 
eigenmodes .) 

We can also exclude explosive instability, the most dangerous nonlinear instability, 
which arises because of nonlinear coupling between steady eigenmodes with different 
sign of S2E (Morrison & Kotschenreuther 1990). Because of (19), the mode with 
positive S2E could not conserve all Casimirs, and hence it could not grow without 
bound. 

5. Discussion 
In the previous sections, we have proved the existence of a spectrally stable solution 

on every isovortical surface satisfying the following conditions: S 2 0 and q 3 0, q 
should have compact support, and q should satisfy (10) on its support. 

The condition qmin > 0 in (10) is probably purely technical. A large body of 
experience with contour dynamics simulations indicates that the limit where the 
number of contours is large, and thus the vorticity discontinuity small, is well-behaved 
(Legras & Dritschel 1993). There is therefore no reason to believe that a discontinuity 
at  the boundary of the support is necessary for the existence of a localized solution. 

The inequality (1 8), which guarantees that the support of the maximizing function 
4 on a bounded domain lies entirely in the interior of the domain, also gives an upper 
estimate of the size of the vortex. However, as indicated above, the appearance of qmin 
in this expression is probably artificial. If qmin is much smaller than the typical vorticity 
in the vortex, the estimate given by (18) is therefore probably much too large. 

Note also that the long-range nature of the Green’s function is crucial for the proof. 
With a short-range Green’s function, for which $ is finite at  infinity, a separatrix 
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appears in stationary solutions. Outside the separatrix the streamlines !P = const. are 
open, and q must vanish, and it is therefore obvious that a stationary solution does not 
exist on isovortical surfaces where the support of q is too large. 

The case when q and S are both negative is of course equivalent to both being 
positive. If, on the other hand, q and S have opposite signs, the first term of (3) 
corresponds to a potential hill (or, rather, ridge), and we can neither prove existence 
nor stability of any stationary solution. It is known, however, that exact stationary 
solutions in the form of elliptic patches of constant vorticity exist in this case, unless 
the external shear is too strong (Moore & Saffman 1971). These patches are lying on 
top of the potential ridge, stretched out in the transverse direction to the external flow 
(i.e. ‘hanging down’ on both sides of the ridge). The energy is then maximized with 
respect to the internal interaction (the second term of (3)), but minimized with respect 
to the external field (the first term). Thus, the total energy has a saddle point. Such 
vortices are easily disrupted by perturbations of finite amplitude, as seen in the 
simulations by Marcus (1990). 

The present analysis is easily extended to a general external strain flow. Assuming 
that the vorticity anomaly is positive everywhere, one finds that maximum energy 
configurations exist whenever the external streamfunction is positive definite. This 
means that the origin is an elliptic stagnation point of the external flow, with the same 
sign of the vorticity as the vortex. In all other cases, i.e. when it is a hyperbolic 
stagnation point or a counter-rotating elliptic stagnation point (with opposite signs of 
the external vorticity and that in the vortex), the energy is indefinite, and nothing can 
be proved. Examples of this kind are the Kirchhoff vortex (a steadily rotating elliptic 
vortex patch), and the V-states found numerically by Deem & Zabusky (1978). These 
solutions correspond to vortex patches on top of a circular potential hill, since the 
outer flow is counter-rotating in the reference frame where the solutions are stationary. 

The intuitive argument in $2 closely follows the ideas of Petviashvili & Yan’kov 
(1984) and Filippov & Yan’kov (1986), who used the method to prove existence and 
stability of localized vortices in various plasma equations. One case is the one- 
dimensional Vlasov-Poisson equations, which are very similar to the two-dimensional 
Euler equation, and describe the evolution in phase space ( x , v )  of a gas of charged 
particles in a self-consistent electrostatic potential. Petviashvili & Yan’kov studied the 
existence and stability of ‘ion holes’ and ‘electron holes’, which are phase-space 
vortices with a local depletion of the distribution function. Note, however, that the 
Green’s function has short range in this case because of the Debye screening. As 
explained above, this means that a maximum energy state does not exist on all 
isovortical surfaces. 

Finally, some comments should be made about the implication of the present result 
for flows on the P-plane (i.e. with a background gradient of potential vorticity) and 
flows with non-uniform external shear. In these cases the system supports linear waves 
(i.e. Rossby waves) with positive energy that conserve all Casimirs, hence no maximum 
energy state exists. If a vortex interacts strongly with such waves it will quickly be 
disrupted. (Such a process is characteristic for maximum energy states. It is not 
possible for states that are stationary because they minimize the energy, which is more 
common in various branches of physics.) The main condition for a vortex to be long- 
lived is therefore that the wave radiation from the vortex is absent or weak. The most 
powerful kind of radiation is Cerenkov radiation, and the condition for it to be absent 
is that the vortex should propagate with a velocity that does not coincide with the 
phase velocity of any linear waves. This condition has been explored for a number of 
two-dimensional or quasi-two-dimensional fluid models (Nycander 1994). 
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Appendix A. Proof that a bounded sequence of symmetric decreasing 
functions is totally bounded 

For simplicity, we here define the domain as D = {x,y: 0 < x,y d I}, and let Zbe the 
set of functions f e  L1[D] which are non-increasing in x and y ,  and satisfy 0 df< 1. 
(The generalization to symmetric decreasing functions on - L < x,y < L is of course 
immediate.) In this Appendix, the norm used is always the L1-norm. We will show that 
the set Z is totally bounded. By definition, we then have to show that given E > 0, there 
exists a finite number of functions vi E Z such that 

llvi-fll < 6 (A 1) 

for any f e z  and some function vi. This means, loosely speaking, that a finite number 
of elements in Z can approximate the whole set arbitrarily well. 

The approximating functions vi are constructed as follows. Divide D into N 2  squares 
with the side S = l/N. The squares are denoted Dm,, = {x,y: (m- 1)s < x < ma, 
(n-  1) S < y < na}, where 1 < m, n < N, and m and y1 are integers. Any vi is constant 
in each square D,,,, and is only allowed to assume the discrete values j S ,  where 
0 d j  < N ,  andjis an integer. There are (Ns 1)"'such functions. Let the approximating 
set {vi} be the non-increasing subset of these functions. 

Given some functionfe Z, we first show that it can be approximated by a piecewise- 
constant functionfl Let Ax, y )  be equal to the infimum off over the square Dm,, where 
(x, y )  is situated. Since f is non-increasing in x and y ,  we get 

Xx,v)  = infAx,v> 3 SUP . f (x ,y)  for (X,Y)EDm,,. (A 2) 
D m , n  Dm+, ,n+ ,  

When m = N or n = N ,  we replace the right-hand side of (A2) by zero. Introduce the 
notation 

SUPf(X,Y) =.Am,,. 
D m , n  

Also define the 'maximum local error' A m , , :  

Am,n(x,Y) = SUP [ f (x ,~>-Ax3~)I  d f m , n - f m + l , n + l  
D m , n  

We then obtain 

N N N A' 

Ilf-fll = ss' If-fidxdy < c c Am,,S2  < a2 c c (fm,,-fm+,,,+,). 
m=l n=1 0 0  m=l n=l 

If the terms of this sum are displayed on a grid, it is easily seen that the contributions 
from all interior points cancel. Sincef,,,,,,, is zero when m = N o r  n = N ,  we are left 
with only the 2N- 1 termsf,,, where m = 1 or n = 1. Using f,,, < 1 ,  we finally obtain 

IIf-flI d S2(2N- 1) < 28. (A 3) 
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The second, trivial step is to show thatfcan be approximated by some cpi. Clearly, pi 
can be chosen so that If=-pil d S for all (x, y) in D. Thus, 

Choosing 6 = e/3, we obtain the desired result (A 1) from (A 3) and (A 4). This proof 
also shows that I is totally bounded in L2[D], since the L2-norm is bounded by the L’- 
norm, as pointed out in $3. 

What has been shown in this Appendix is a special case of a theorem that states that 
the set of functions on D with variation bounded by some constant is compact in L1[D] 
(Corollary 5.3.4 in Ziemer 1989). 

Appendix B. Proof that the energy is a continuous functional 

functional on L2[D], we first rewrite (3) as a sum of two scalar products: 
In this Appendix, we always use the L2-norm. To show that E is a continuous 

E[ql = -@Y2, q)-;(q, Gq), (B 1) 

where G is the Green’s operator, with the kernel g(rl ,  r2)  = ( 1  /2x) In (Ir, - r21). Since G 
is symmetric, we have, using the Cauchy-Schwartz inequality, 

l(49G@)-(qi,Gqi)l = 1(4-qi>G(4+qi))I d II4-qiII llG(4+qJlI d II4-qiII IIGII II4+qiII. 
(B 2) 

The norm of the Green’s operator, defined by 

is here finite. Using (B2), we obtain 
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